August 30, 2024
$$\mathrm{RV}_{i,t+1}^{(d)} = c + \beta^{(d)} \mathrm{RV}_{i,t}^{(d)} + \beta^{(w)}\mathrm{RV}_{i,t}^{(w)} + \beta^{(m)}\mathrm{RV}^{(m)}_{i,t} + \epsilon_{i,t+1},$$ where $\mathrm{RV}_{i,t}^{(d)}$ denotes the logarithm of the daily realized volatility of stock $i$ at time $t$ and
$$\mathrm{RV}_{i,t+1}^{(d)} = c + \beta^{(d)} \mathrm{RV}_{i,t}^{(d)} + \beta^{(w)}\mathrm{RV}_{i,t}^{(w)} + \beta^{(m)}\mathrm{RV}^{(m)}_{i,t} + \epsilon_{i,t+1},$$ where $\mathrm{RV}_{i,t}^{(d)}$ denotes the logarithm of the daily realized volatility of stock $i$ at time $t$ and
Typically, HAR is estimated in a
Study | Window Style | Training Window | Stride | Assets |
---|---|---|---|---|
rolling | 200, 400, 1000, 2000 | 1 | 9 | |
rolling | 502 | 1 | 19 | |
rolling | — | — | 29 | |
rolling | 22, 63, 126, 252, 504 | 1 | 4 | |
rolling | 100 | 1 | 1 | |
expanding | 250 | 250 | 100 |